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A method is presented for the calculation of the emergent particle distributions of 
the albedo problem in one-speed transport theory with arbitrary anisotropic scattering. 
From a singular eigenfunction expansion of the solution of the albedo problem and the 
orthogonality properties of these eigenfunctions, a pair of coupled Fredholm integral 
equations of the second kind are obtained for the reflected and transmitted distributions. 
These integral equations are readily decoupled, and can be approximated by a set of 
linear equations from which very accurate numerical solutions are obtained. 

I. INTRODUCTION 

One of the most important problems in one-speed particle transport theory 
for media with plane and azimuthal symmetry is the slab albedo problem. In this 
problem a monodirectional beam of particles is incident on one surface of a 
homogeneous, isotropic, source-free slab of thickness 7, which is surrounded by 
vacuum. Inside the slab all particles are assumed to travel with the same speed. 
The mean number of secondaries per collision is denoted by c, and the scattering 
function (or phase function) is assumed to be expanded in a finite sum of Legendre 
polynomials of the scattering angle. Then, if distance x is measured in units of 
the mean free path and direction by the cosine TV of the angle between the velocity 
vector and the positive x axis, the angular distribution $I of the particles inside 
the slab satisfies [l] the equation 

for 0 .< x < T and -1 < p < 1, with the boundary conditions 

m4 P> = Sb - P”) o<I”, Y,<l, U-2) 

#CT, PI = 0 -1 <p<o. U-3) 

* This research was supported in part by the National Science Foundation under Grant GK- 
5557. 

109 
Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



I IO SHULTIS 

The b,‘s are the coefficients of the N or 1 term Legendre polynomial expansion of 
the scattering function. 

The calculation of the distribution I/J is encountered in many areas of mathe- 
matical physics, particularly in neutron transport theory and radiative transfer. 
The slab albedo problem, besides being important in its own right, is perhaps 
the most fundamental finite medium transport problem since the solutions to all 
other slab problems (e.g., Green’s function) can be expressed in terms of the slab 
albedo problem solution and known infinite medium solutions [2]. A closed form 
solution to the slab albedo problem, even for the simplest case of isotropic scatter- 
ing, is not known. In many applications (e.g., neutron shielding problems and 
diffuse reflection from planetary atmospheres) the complete solution is not required, 
but rather only the particle distributions at the slab surfaces are sought, i.e., 
R(,u) := #(O, -p), p :z, 0 and T(p) ~~~ #(T, CL), ,U I 0. Even for these emergent 
distributions no closed form solution has been found, although many computa- 
tional schemes have been suggested, most of which are based on the calculation 
of the X and Y functions of Chandrasekhar [3]. These X and Y functions, from 
which (together with some associated polynomials) the emergent albedo distribu- 
tions are evaluated, can be found by numerical solution of various pairs of coupled 
equations-nonlinear integral equations [4], nonlinear integrodifferential equa- 
tions [5], linear singular integral equations [6], and regular Fredholm equations 
[7, 81. 

The purpose of this paper is to present a new method for calculation of the 
emergent distributions of the slab albedo problem. This method has the advantage 
that it allows computation of the emergent distributions directly without first 
calculating auxilary functions such as the X and Y functions. The reflected and 
transmitted distributions R and T are shown to satisfy a pair of coupled regular 
Fredholm integral equations which are readily decoupled. The numerical solution 
of these equations is easily obtained and gives very accurate results even for high 
degrees of scattering anisotropy. 

The Fredholm equations for the reflected and transmitted particle distributions 
are derived from Case’s singular eigenfunction expansion technique [l, 91 as 
applied to the anisotropic slab albedo problem. With this technique the albedo 
problem solution is expanded in terms of a complete set of eigenfunctions of 
Eq. (1 -I). In the usual application of Case’s technique, singular integral equations 
(which for the slab albedo problem can be reduced to Fredholm equations) for 
the expansion coefficients are obtained. To evaluate the emergent distributions, 
these equations for the expansion coefficients must be solved numerically, and 
then the original singular eigenfunction expansion is evaluated at the slab surfaces. 
Such numerical evaluation is far from being trivial especially if the scattering 
function is highly anisotropic [lo, 1 I]. In the present method, use of the ortho- 
gonality properties of these eigenfunctions allows the expansion coefficients to 
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be expressed directly in terms of the emergent distributions. Substitution of these 
results into the eigenfunction expansion of the slab albedo solution at the slab 
surfaces yields a pair of coupled Fredholm equations for the emergent distribu- 
tions. 

In the next section a brief review is presented of the singular eigenfunction 
expansion technique as applied to the slab albedo problem. Then in Sections III 
and IV the Fredholm equations for the emergent distributions are derived for the 
cases c < 1 and c = 1, respectively. Finally the numerical solution of these 
Fredholm equations is discussed. 

II. SINGULAR EIGENFLJNCTION EXPANSION OF 4 

The complete solution of the slab albedo problem can be uniquely expanded as 
[I, 91 

- dv A(v) $(v, p) e-“i”, (2-l) 

where the ahj and A(v) are the expansion coefficients and 4 and v are the eigen- 
functions and eigenvalues of the homogeneous 
for ; v / > 1 the eigenfunctions are given by 

where the A4 pairs (1 ~1 M C< N + I) of discrete 
the dispersion relation 

1 - T j“ 
1 

dp $k$ 

The function D is given by 

N 

transport equation. Explicitly 

,j = 1 ... M, (2-2) 

eigenvalues, fv, , are given by 

= 0. 

where the polynomial h, is defined by the recurrence relation 

(n + 1) h,+1(v) - v(2n + 1 - b,c) h,(v) + nh,-,(v) = 0, ?z 

and ho = 1. 

581/11/I-8 

(2-3) 

(2-4) 

0, 1, 2,... (2-5) 
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For v E (- 1, 1) the eigenfunctions are given by 

4<% p) = T s + X(v) S(v - p), O-6) 

where the generalized functions (v - p)-l and 6(v - CL) are defined by the func- 
tionals 

((v - p)-l, Q(p)) = fl dp spa v ~- p (2-7) 

and 

@(v - CL), @(P)> = @(VI if vE [-1, l] 
V-8) 

= 0 if v $ t-1, 11, 

respectively, for all test functions @. The symbol $ refers to integration in the 
Cauchy principal value sense. The function X is defined as 

h(v) = 1 - T $‘, dp $$. (2-9) 

The eigenfunctions 4 satisfy an orthogonality relation which symbolically may 
be written as 

s 1 

dp P#J(V, 14 Wt A = 0 if v # v’ for v, v’E(-1, 1) or fvj, (2-10) 
-1 

J' 
' (2-l 1) 
-1 

dp P$~(~v~, 1.4 = fN;l, 

I 
1, dy. /-4(v, cl) S&J', cl) = N-W &v - 4, (2-12) 

where 

(2-13) 

N(v) = {v[~~(v) + ((c~rv/2)D(v, v))"]}-l. (2-14) 

Because the continuum eigenfunctions are linear functionals, Eqs. (2- 10) and (2- 12) 
are actually abbreviations for the statement 

j', dp p+(v, p) j; dv'f(v') +(v', 1-1) = ];(v' N-1(v) f ; ; ra"; ;;, (2-15) 

where -1 < a ( b < 1 and f is any continuous function. 
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111. DERIVATION OF FREDHOLM EQUATIONS FOR c < 1 

From the above orthogonality relations, expressions for the expansion coeffi- 
cients of Eq. (2-l) can be obtained in terms of the emergent distributions. Set 
x = 0 in Eq. (2-l), multiply through by pr$(vj , p), integrate over p, and use the 
orthogonality properties together with boundary condition (l-2) to obtain 

(3-l) 

Similarly, by multiplying Eq. (2-l) by $(v, p), v > 0 instead of $(v~, p) one 
obtains 

44 = NV) jpo9k po) - j: 4 /4(-v, p) Nd/, v > 0. (3-2) 

To calculate apj set x = 7 in Eq. (2-l), multiply through by p#(-vj , p), integrate 
over p, and use the orthogonality relations plus Eq. (l-3). The result is 

Similarly A( -v) is given by 

,4(-v) = -N(v) ecT/* 11 dp p$(-v, p) T(p). (3-4) 

Substitution of these results into the expansion (2-l) gives the complete solution 
#(x, I*) in terms of the reflected and transmitted distributions. In particular, 
this result can be evaluated for the reflected and transmitted distributions by 
setting x = 0 and T, respectively. The result is a pair of coupled integral equations, 
namely, 

NP.) = P-LO : N&i 3 PO) $<-vj 3 P) + ~0 j: dv NV) (b(v> ~0) 4(-v, P) 
i=l 

- j' dp’ P’G., $1 %J) - j’ dp’ CL’%, $1 G4, CL > 0 (3-5) 
0 0 

and 

T+) = p. F N~-#(IQ , po) 4<vj , p) e-“‘j + p. jl dv NW d<v, po) $(v, 1.4 e-+ 
j=O 

- j' LICL' P'G(P, P'> NP') - s' dp' $K(P, $1 Q4, p > 0, (3-e) 
0 0 
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where the kernels K and G are defined as 

and 

G(p, p’) s f N&-vi , p’) $(vj , p) eCiL’J + jl dv N(v) (6(-v, p’) +(v, p) e-T/“. 
j=l 

(3-g) 

Equations (3-5) and (3-6) are not very amenable to numerical solution, since 
the transmitted distribution T is comprised of a continuous collided contribution 
F-(p) and the singular uncollided source, eP ““08(, - pO). The singularity intro- 
duced by the uncollided source is manifested by the second term on the right of 
Eq. (3-6). However, the singularity in the above equations can be removed by 
rewriting these equations solely in terms of the collided transmitted distribution Y-, 
viz., 

Y(p) = T(p) - 8(p - ,u,,) criuo. (3-9) 

The result obtained is 

where 

g(p) = p. f Nj+(vj , po> #4vj , cLNe+j - em”“01 
j=l 

(3-10) 

+ po j: dv N(V) $(v, po) +(v, p)k+” - e-T”‘Ole (3-11) 
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The term in the braces on the right of Eq. (3-10) is simply the singular eigen- 
function expansion of the functional S(p - ,LQ,)/,LL,, [12], and hence 

mp) = g(p) -- !” dp’ p’G(p, p’) R(p)) - 1’ dpL( y’lqp, p’) T(p’), p >o. 
- 0 - 0 

(3-12) 
Substitution of Eq. (3-9) into Eq. (3-5) gives 

R(p) = hp.) - /-I dp’ p’K(p, p’) W) - j-’ dp’ p’G(p, p’) f(p’>, p > 0, 
‘0 0 

(3-l 3) 
where 

The functions k(p), g(p), K(p, p’) and G(p, p’) for CL, p’ E (0, 1) are continuous 
and thus Eqs. (3-12) and (3-13) are a pair of regular Fredholm equations of the 
second kind for the emergent distributions. In Section V a method for the numerical 
solution of these Fredholm equations is discussed. 

IV. DERIVATION OF FREDHOLM EQUATIONS FOR c = 1 

The situation when c approaches unity is of particular interest in many physical 
situations. This limiting situation is known as the “nonabsorbing” case in transport 
theory and the “conservative” case in radiative transfer. The results of the previous 
section must be modified since the two discrete eigenvalues fvl coalesce at infinity 
as c approaches unity, and thus the expansion of the albedo problem solution 
given by Eq. (2-l) is no longer valid. However, the eigensolution expansion tech- 
nique can still be used by introducing two particular solutions of the homogeneous 
transport equation. Two such solutions are 

and 
$2 = %x + 3P/(b, - 3)). (4-2) 

With these two particular solutions in place of the eigensolutions 
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d(ztvr, P) exp[Fx/v,], the albedo problem solution can be expanded uniquely 
as [91 

I 
1 

-t dv A(v) c$(v, p) ecz/“. (4-3) 
-1 

For the case c = 1, the remaining eigensolutions satisfy two integral relations 

s’, dcL p$<v, PL) = s’, dp /-WV, CL) = 0, vE(-l,l)OrVj, j=2”‘M. 
(4-4) 

These results imply the eigensolutions are orthogonal to the two particular solu- 
tions. Hence the coefficients aAj , j = 2 ... M and A(v) can be found in the same 
manner as in the previous section, and are given by the same expressions, namely 
Eqs. (3-l)-(3-4). The coefficients ah, can be evaluated in terms of the emergent 
distributions by setting x = 0 and x = 7 in Eq. (4-3) multiplying by p and $, 
and integrating over CL. Then from the relationships of Eq. (4-4) one obtains 

1 
a,=- 3 

2 1 j: dp PWPL) + TP)I - 4, - 3) j: dp GYP) + 3~0'/ (4-3) 

and 
b,-3 1 

a-1 = --z- IS 
\ 

0 dp CLLYP) - WP)I + ~0). (4-6) 

Substitution of these results for a+9 , j = 1 ... M and A(v) into Eq. (4-3) gives 
the complete albedo problem solution in terms of the reflected and emergent 
distributions. In particular, by setting x = 0 and x = T in the resulting expression, 
coupled integral equations, completely analogous to Eqs. (3-5) and (3-6), are 
obtained for R and T. As before, if we analytically extract the uncollided delta 
function source from the R-T equations, a pair of equations which is much more 
amenable to numerical treatment results. For c = 1, the singular eigenfunction 
expansion of &..L - po) is 

s 1, dv WV) $<v, PO> $0~ P) . i (4-7) 

Using this expansion together with Eq. (3-9), the R-T equations reduced to a 
pair of coupled regular Fredholm equations of the second kind of exactly the 
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same form as that of Eqs. (3-12) and (3-13). For the case c = 1, the functions k, g, 
K and G are defined as 

g(cL) = p. i Go + p.)(l - e+9 + i (b, - 3) + jc2 N&vi , ~~-0) (b(~$ , p) 
1 

x [e 
-71vj _ e --7/lQ 

1 

+ j: dv N(v) #J(v, po) +(v, p)[ewr’” - e~TlyO]~, (4-9) 

K/4 CL’) = - ; (I* + CL’) + 5 Nj$(+Jj, I”‘) #<-vi ) p) 
j=2 

+ j: dv N(v) $(-v, CL’) 44-v, p), (4-10) 

and 

G(p, p’) E i (p - p’) + i (61 - 3) + t N&vi , p) &-vj , ,u’) e+“‘j 
j=2 

+ 1’ dv NV) d(v, EL) 4(-v, $1 eclv. 
0 

(4-11) 

V. NUMERICAL SOLUTION OF THE FREDHOLM EQUATIONS 

(a) Decoupling and Evaluation 

The Fredholm equations for the emergent distributions derived in the previous 
sections are readily decoupled. Define 

and 
Z(p) = R(p) - np). (5-2) 
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Addition and subtraction of Eqs. (3-12) and (3-13) give the following pair of 
uncoupled Fredholm equations for the Wand 2 functions: 

and 

z(p) = k(p) - g(p) - 1’ 4~’ p’[UpL, $1 ~- Gb> ~31 Zh’). (5-4) 
0 

The numerical solution of this pair of integral equations can be obtained in 
a number of ways. The most direct method is to approximate the Fredholm inte- 
grals by numerical quadrature, and then to evaluate Eqs. (5-3) and (5-4) at the 
various quadrature abscissas, thereby obtaining a set of linear equations. These 
linear equations may be solved readily by standard techniques to yield values of W 
and 2 at the quadrature abscissas. Once Wand Z are known, the transmitted and 
reflected distributions are found from Eqs. (5-l) and (5-2). 

To evaluate the coefficients and inhomogeneous terms in the linear equations 
which approximate the integral equations (5-3) and (5-4) it is necessary to evaluate 
the functions k, g, K and G at the quadrature abscissas. The evaluation of these 
functions will necessitate further use of numerical quadrature. Further, in the 
calculation of k, g and G principal value integrals are involved. These principal 
value integrals can be transformed for numerical purposes into ordinary integrals 
by observing, for any Holder continuous function 6 

I 
ldv f(v) - 

i 
l (jv &L- f(P) 

0 V-P 0 
v T + f(p) In [Lyk-], p c (0, 1). (5-5) 

Using this result together with the definitions of the eigenfunctions (Eqs. (2-2) 
and (2-6)), explicit expressions for k, g, K and G, suitable for numerical evaluation, 
can be obtained. In particular, for the nonconservative case (c < I), there results 

fGL’, CL) = K&L, 1.4 = f 1 i 
M vj2NjD(-vi, p) D(-vj, p’) 

.I=1 (Vi + CL&j + P') 

v2Wv) N--v, p) N--v, p') 

+ J't dv - (v + p>(v + p') I ' 
(5-8) 



and 

G(p> ~‘1 = 

where 

k,(p) 

119 

(j-9) 

c vD(v, PO) N(v) ,,-,a ~. e-T ‘uol 
2 (v - PO> 

v + ho 

g,(v) = 
c TD( ~0 > PO) N(PL,) e-Tiuu -__ 
2 PO 

v _ tLo 
(5-l 6) 
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For the conservative case (c = I), one has 

k(p) = k’(p) + fi{3(pLo - p)(l + e-““o) - T(b 4 1 

g(p) = g’(p) + ““(3(p 4 o + p)(l - e-““O) + 7(bl 

Q-4 p’) = K’(p, $1 - ; (p + p’), 

G(P, P’) = G’(p, p’> + ; (p - II’) + ; (b, ~ 3), 

3) e-r’uo}, 

3)), 

(5-19) 

(5-20) 

(5-21) 

(5-22) 

where k’, g’, K’ and G’ are given by Eqs. (5-6)-(5-9) with the discrete spectrum 
summation operator Cj”=, in Eqs. (5-7)-(5-10) replaced by C,“f, . The numerical 
evaluation of the integrals in Eqs. (5-l I)-(5-14) and (5-18) can be performed by 
using a quadrature approximation. However, because of the indeterminacy of 
the integrands in these equations when v = CL, it is necessary that a different set 
of quadrature abscissas be used than that used for approximating the Fredholm 
integrals. 

Finally, before the functions k, g, K and G can be evaluated, the constants Ni 
and vj and the functions D and N must first be obtained. The discrete eigenvalues vi 
and their multiplicity A4 may be calculated from the dispersion relation of Eq. (2-3) 
[l 11. The function N is readily calculated from Eq. (2-14). The discrete normaliza- 
tion Nj can be found from numerical evaluation of Eq. (2-13) provided vi is 
sufficiently greater than unity. Often, however, some of the vi are only very slightly 
greater than unity, and much more accurate results may be obtained by using 
Eq. (2-13) in the form 

(5-23) 

The evaluation of the function D(v, CL) for / v /, ( p j < 1 is readily obtained directly 
from its definition, Eqs. (2-4) and (2-5). However, for 1 v 1 appreciably greater 
than unity and for a large degree of anisotrophy N, it is exceedingly difficult to 
evaluate this function. That such difficulties should arise is not surprising since 
the n-th term in the sum of Eq. (2-4) is a polynomial in v of degree n, and for large n 
(and 1 v 1 > 1) this term will be very large and vary rapidly with v. Only for v 
exceedingly close to the discrete eigenvalues vj do the large terms in the sum of 
Eq. (2-4) add together to produce a smooth and slowly varying function of II. 
For very large N the accuracy required for vj and the ensuing evaluation of Eq. (2-4) 



SLAB ALBEDO PROBLEM 121 

is often greater than that available in a computer. This difficulty in evaluating D 
arises from the expansion of the scattering functionf(p, p’) as 

f(p, CL’) = f bnP?dP’) P,(P). 
n-o 

However, the function D(v, p) for 1 v 1 > 1 can also be defined by the integral 
equation [lo, 111 

WV, pcL) = 7 I’, dp’f (pL, II’) 3 (5-25) 

which has a nontrivial solution if and only if v equals one of the eigenvalues vi . 
The evaluation of D(vi , p) from this equation is discussed in detail in Refs. [lo, 1 I]. 

(b) Discussion of Results 

A computer program has been written to calculate the emergent distributions 
from the Fredholm equations developed in the previous sections. Gaussian quadra- 
ture for the interval (0, 1) was used for evaluation of the Fredholm integrals 
(order m) and the integrals in the functions k, g, K and G (order n). This particular 
quadrature approximation is well suited for the present analysis, since the quadra- 
ture abscissas are clustered near the end points. The integrands in the definitions 
of k, g, K and G often tend to vary rapidly near the upper endpoint, while the 
functions R and Y exhibit relatively large variations near p = 0. To study the 
effect of anisotropic scattering it is necessary to specify a scattering or phase 
function. For the present analysis the following fictitious function has been used 
[I I]: 

f ysz . Q’) = qg (I + G! . say, N = 0, 1) 2 )... . (5-26) 

This forward scattering function, which resembles many scattering functions 
encountered in physical situations, becomes concentrated near Q . Q’ = 1 as 
N increases. Mathematically this function has the advantage that it can be 
expanded exactly in terms of the first N + 1 Legendre polynomials, namely, 

(5-27) 

where the coefficients b,N are given by the recurrence relation 

N+l - bnN = 2N [ 
& b,N_;1 + b:--l + $f$ b:;:] (5-28) 

with boN = 1 (N = 0, 1, 2 ,...) and bnN = 0 if n > N. 
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Many calculations have been performed for various values of 7, c and N using 
different orders of Gaussian quadrature. It was found that a higher order of 
quadrature n is necessary for evaluation of k, g, K and G compared to the order tn 
needed for the Fredholm integrals. For given values of m and n, the accuracy 
of the results tend to increase as c and T increase and N decreases. Table 1 presents 
a comparison of the reflected and transmitted distributions as calculated from the 
Fredholm equations of this paper for various orders of Gaussian quadrature, 
and various degrees of anisotropy. Also included in this table are values as cal- 
culated by the codes SLABCODE [I I] (based on the singular eigenfunction 
solution of Kaper [9]) and ANlSN [13] (based on a discrete ordinate calculation 
using DP, quadrature set). In Fig. 1 the calculated emergent distributions for a 
particular slab albedo problem are shown for various degrees of anisotropy. 

“I li,,. : 

FIG. 1. The reflected and transmitted particle distributions from a slab with c = 0.95,~ = 1.0 
and pLo = 0.5 for various degrees of anisotropy of the scattering function fN. 

To assess the accuracy of the present method for given m and n, the slab thickness 
was set to zero and the total albedo OL and transmittance p defined as 

(5-29) 

were calculated. As 7 increases, results generally increase in accuracy since the 
functions g and G (the most difficult to evaluate accurately) decrease in magnitude 
and have less of an effect on the computations. Thus, the amount 01 and /3 differ 
from zero for T = 0, gives an indication of the maximum error to be expected 
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in calculations for a slab of finite thickness using the same quadrature sets. In 
Table II albedo and transmittance results are presented. 

TABLE II 

Calculated albedo and transmittance for a slab of zero thickness (c = 0.95, p0 = 0.5) 
for various orders of anisotropy 

m=S,n=6 

N oi B 

0 -0.21(-3) 0.12(-3) 
2 -0.24(-3) O.lO(-3) 
5 0.73( -2) -0.79(-2) 

10 0.52( -2) -0.14(-2) 
20 0.42( - 1) -0.86(-2) 
30 0.60(-l) -0.15(-l) 
40 
50 

100 

in = 15, n = 16 
a B -~~ .~- ~-..- 

-0.21(-4) 0.17(-4) 
-0.35(-4) 0.14(-4) 

0.91(-3) -0.30(-3) 
0.38(-4) -0.82(-5) 
0.41(-3) -O.ll(-3) 

-0.19(-5) -0.73(-5) 
O.ll(-2) -0.27(-3) 
0.57(-4) -0.98(-5) 

m = 21,n = 50 
a B 

-0.21(-5) O.ll(-5) 
-0.24(-5) 0.96(-6) 

0.33(-3) -O.ll(-3) 
0.24(-3) -0.49(-6) 
0.20(-4) -0.55(-5) 

-0.95(-6) -0.24(-6) 
0.85(-4) -0.20(-4) 
0.19(-5) -0.20( -6) 
0.62(-4) -0.23( -4) 

The time required for the code to calculate the emergent distributions for a 
particular problem varied greatly depending on how the functions D(fv$ , p) 
were computed. If these functions were calculated directly from Eqs. (2-4) and 
(2-5) the problem, using the present technique, was calculated in about one fortieth 
of the time required by SLABCODE. However, if @fvj , p) is calculated from 
Eq. (5-25), the running time is increased considerably. Fortunately, in many 

TABLE III 

Effect of the higher Legendre expansion coefficients of the scattering 
functionfsO on the albedo OL and transmittance j from a slab for 

which c = 0.95, 7 = 1.0 and p0 = 0.5.a 

50 
40 
30 
15 
10 
8 
6 
4 

0.04313901 0.70660650 
0.04313901 0.70660650 
0.04313901 0.70660650 
0.043134 0.706611 
0.04319 0.70664 
0.0420 0.7079 
0.0373 0.711 
0.0462 0.697 

a The index I denotes the number of coefficients retained, i.e., b, = 0 if n > I. 
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problems this function may be calculated quite accurately from Eqs. (2-4) and 
(2-5) even for highly anisotropic scattering functions by simply ignoring the 
higher Legendre coefficients b, . For the calculation of the albedo (II and trans- 
mittance p, most of the higher coefficients may be ignored. In Table III the cal- 
culated values of a! and j3 are seen to depend significantly only on the first few 
coefficients. Even the emergent distributions are not strongly dependent on the 
higher coefficients, a result seen from Fig. 2. 

T Reflected Distribution, + (0.p) 

TransmItted Distribution, e (T ,g) 

'C,, @j= 
I 

50,40,30 -ye -:6 -14 ;;2 0 :2 :4 16 18 1.0 I 

COSINE OF ANGLE, p 

FIG. 2. Effect of the higher Legendre expansion coefficients offSo on the emergent distribu- 
tions from a slab for which c = 0.95,~ = 1.0 and p,, = 0.5. The parameterj denotes the number 
of coefficients used in the calculations, i.e., 6, = 0 if n > j. 
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